Existence of a ground state solution for a class of singular elliptic problem in RN$\mathbb{R}^{N}$
نویسنده
چکیده
when p = , |f (x,u)| ≤ c(|u|+ |u|q–), < q≤ ∗ = N N– ,N ≥ , for the corresponding results onemay refer to Brézis [], Brézis and Nirenberg [], Bartsch andWillem [] and Capozzi, Fortunato and Palmieri []. Garcia and Alonso [] generalized Brézis, Nirenberg’s existence and nonexistence results to p-Laplace equation. Moreover, let us consider the following semilinear Schrödinger equation:
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کامل